
NASA-CR-190708

Mission and Safety Critical (MASC)
Plans for the MASC Kernel Simulation

h-
a0

, ,,1. c0
,-4 ul

R 0_

N _ e.4
Z _) O

_3

C_
g.

Zu_ C
< Z "-

Z ..J c_ :

_ .,J.,i o u'l

O_¢; C
O_ i..tJJ b.d I_

¢_UU U4_

<I--
_LU U_O

e.4

GHG Corporation

11/15/91

/ /v--_ ,'- c/Y

Cooperative Agreement NCC 9-16

Research Activity No. SE. 16

NASA Johnson Space Center

Information Systems Directorate

Information Technology Division

Research Institute for Computing and Information Systems

-- University of Houston-C/ear Lake

INTERIM REPORT

The RICIS Concept

The University of Houston-Clear Lake established the Research institute for

Computing and Information systems (RIC[S} in 1986 to encourage the NASA

Johnson Space Center (JSC) and local industry to actively support research

in the computing and information sciences. As part of thls endeavor, UHCL

proposed a partnership with JSC to Jointly define and manage an integrated

program of research in advanced data processing technology needed for JSC's

main missions, including administrative, engineering and science responsl-

bilitles. JSC agreed _d entered into a continuing cooperative agreement

with UHCL beginnlng in May 1986, to Jointly plan and execute such research

through RICIS. Addi_onally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to

serve the needs of the government, industry, community and academia.

RICIS combines resources of UHCL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest

to its sponsors and researchers. Within UHCL, the mission is being

implemented throu_ interdisciplinary involvement of faculty and students

from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences _d Humanities, and Natural and Applied Sciences.

RICIS also collaborates with industry in a companion program. This program

is focused on serving the research and advanced development needs of

industry.

Moreover, UHCL es_blished relationships with other universities and re-

search organizations, having common research interests, to provide addl-

tlonal sources of expertlse to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help

oversee RICIS research an-1 education programs, while other research

organizations are involved via the "gateway" concepL

A major role of RICiS then is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the computing and informs-

Lion sciences. RICIS, working Jointly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nleal and administrative support to coordinate the research and integrates

technical results into the goals of UHCL, NASA/JSC and industry.

RICIS Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by GHG Corporation. Mr. Charlie Randall served

as GHG Project Manager. Dr. Charles McKay served as RICIS research coordinator.

Funding has been provided by the Information Systems Directorate, NASA/JSC

through Cooperative Agreement NCC 9:I6 between the NASA Johnson Space Center

and the University of Houston-Clear Lake. The NASA technical monitor for this

activity was Ernest M. Fridge In, Deputy Chief of the Software Technology Branch,

Information Technology Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government.

Plans for the MASC Kernel Simulation

1.0 Introduction

The purpose of this report is to discuss the MASC Kernel simulation. It explains the
intended approach and how the simulation will be used. Also it introduces the scenario
used in the simulation and gives details about how the simulation works. Finally it
discusses the expected results of this work and outlines future work directions.

In the long term, this simulation will form the basis for both a simulator and a kernel. In
the final MISSION system, there will be a simulator which allows users to try out new
ideas and test new components and programs before their integration into the working
system. The experience gained from the current simulation effort will form the basis for
the simulator. The majority of the current simulation though will focus on the kernel.
Much of the simulation work at this level will concentrate on simulating the kernel and
interactions with the kernel.

The MASC Kernel has been explained in our earlier report on the MASC Kernel. This
simulation is intended to be a prototype of the kernel. As such it will be a "quick and
dirty" one. Its purpose is not so much to provide a truly working kernel in ever aspect,
but instead provide a make-shift kernel to test the practicality of the ideas introduced in
the MASC Kernel report. This prototype will be an evolving one starting with a
forerunner of the kernel as it is now envisioned. Eventually the prototype, or more

precisely the ideas and experience gained from it, will be transformed into a working
kernel. This does not mean that the prototype will itself turn into the eventual MASC
Kernel, but will probably serve as the basis for a redesign, and perhaps redesigns, of the
MASC Kernel.

The simulation prototype will be built in Smalltalk although the final work, i.e. the
kernel, will be implemented in Ada via Dragoon. The reason for choosing Smalltalk for
the prototype is Smalltalk's usefulness in quickly building working models of systems
and its object-oriented approach to software. The eventual system will use such an
object-oriented approach in Ada through Dragoon. Using Smalltalk allows much greater
flexibility in the prototype. Smalltalk is an interactive language and program
development environment which facilitates experimental building and reusing of code
without prolonged compile and link sessions. Smalltalk is much more conducive to a
"design-prototype-refine" approach. (This same increase in flexibility though would
cause a major maintenance dilemma in the final system.)

The simulation will introduce the objects of the kernel and allow the fine-tuning of their
implementation and execution. The idea of an object-oriented kernel is a new one and
some of our ideas have not been tried before. The prototype enables different options to
be evaluated with regard to the various objects within the kernel and their interactions
among themselves. Also the mechanics of using these objects and their associated
messages will be more clearly identified through experimentation with the kernel
simulation. The detailed operations of how these messages interact will be determined.

To implement the simulation, a scenario using elements typical of those in the Space
Station, has been created. The main thrust of this scenario is to demonstrate the use of
nested transactions. Use of the scenario with the simulation will demonstrate that the

kernel appropriately manages nested transactions.

Mission Project 1 11/15/91

At this time thesimulationis in thedesignstage.Someaspectsof thedesign,muchof
which is definedin relationto thescenario,will beshown. Theelementsof thescenario
arebrokendownandshownhow theyinteractwith componentswithin thekernel. For
exampletransactionswithin thescenarioareidentified. In turn it will bedemonstrated
how thesetransactionsareassociatedwith transactionobjects within the kernel. Their

relationship is detailed along with some implementation notes regarding the prototype.

The report concludes with a discussion of some of the future directions for the
simulation. Specifically some of the plans for the prototype are examined. Using this as

a springboard, the plans for turning this prototype into a design and the eventual
implementation of the actual simulation are described.

2.0 Scenario

Eventually it is hoped to simulate all aspects of the MASC kernel, but the initial focus
will be on the simulation of distributed, nested transactions. The example which will be
simulated is a transaction required to safely implement part of the EVACS (Extra
Vehicular Activity Control System), a subsystem of the Space Station responsible for
monitoring and controlling astronauts' Extra Vehicular Activities (EVAs). For the
purposes of this simulation we will be concerned with the part of the EVACS system
responsible for maintaining communication channels between the space station and the
astronauts engaged in EVAs.

In general there will be several astronauts working around the space station at any one
time, each maneuvering by means of a special back-pack known as a Manned
Maneuvering Unit (MMU). Amongst other things an MMU has an embedded computer
which is responsible for activating thrusters in response to the astronauts commands and
for facilitating communications with the space station. When an astronaut wishes to
speak with colleagues on the station his/her voice is digitized and transmitted as a series
of small packets from a radio antenna on the MMU to various radio antennas on the
space station. Communicating in the opposite direction from space station to the MMUs
is obviously achieved in the same way.

The software on the MMUs' embedded computers also uses this medium to communicate
with software modules on the space station, and thus represent nodes of a large
distributed system. The MMUs interact mainly with the so called "Central Control Unit"
(CCU or central controller), a kind of mini "mission control" on the space station from
which crew members can direct activities such as EVAs.

It is obviously important that MMUs shouldbe able to communicate with the space
station at all times, and at any point in space around the station. Since each antenna on
the space station will only provide radio coverage for part of the space surrounding the
space station, to provide complete, uninterrupted coverage several antennas broadcasting
the same signal have to be distributed around its exterior. Furthermore, to avoid
interference each active MMU is allocated a unique frequency. A message exchange

between a particular MMU and the station must be broadcast by every antenna
simultaneously. Since there will often be several active MMUs, each antenna must
therefore maintain a mapping between active MMUs and their allocated frequency. This
suggests that antennas require intelligent controllers which form part of the station's
distributed system and can interact with other nodes such as the CCU. As far as
communications frequencies are concerned, however, an MMU is required only to record

its own frequency.

Mission Project 2 11/15/91

Transactionsbecomeuseful when one considers the problem of changing the frequency
allocated to a particular MMU. This might be necessary to avoid interference from the
Earth's magnetic fields or the Van Allen belt, or to reduce the chances of undesired
eavesdropping. Assuming the need for such an operation, it clearly has properties that
lend it to implementation as a distributed nested transactions. The overall action of
changing the frequency allocated to one MMU requires state changes in several
distributed objects; the antennas and the MMU concerned. If these state changes were
implemented using normal procedural abstractions a failure in one of the processors or
the communications system while a frequency change was being performed could result
in one or more antennas or the MMU being in an undefined state, or being in mutually
inconsistent states. Clearly the nature of the communications subsystem means that both
these situations should be avoided at all costs since they either diminish, or completely
eliminate the system's ability to communicate with the MMU involved. Should a fault or
failure occur which obstructs the system's ability to successfully complete the frequency
change it is clearly much more desirable for the system to maintain its old state rather
than move to an erroneous or inconsistent one.

The frequency change operation is clearly best implemented as a distributed nested
transaction, therefore, since this ensures that the system would only change state if it is
able to do so successfully. The master transaction is the "global" frequency change
operation, and the nested transactions are the operations to change the antennas and
MMU individually. Figure 1 illustrates the objects participating in the master
transaction, and the "operations" involved.

set. frequency I MMU. treq]

get.._equency(freq I

Figure 1

In order to demonstrate the successful implementation of this distributed nest transaction
it is necessary to illustrate how the state variables storing the communication frequencies
of the various participant objects change during the execution of the simulation. For each

Mission Project 3 11/15/91

activeMMU andantenna,therefore,awindow is createdwhich displays the current
value of the relevant state variables. In the case of the MMUs this is simply a variable of

type FLOAT which stores the frequency at which the MMU thinks it is currently
communicating. In the case of the antennas, however, this is an array of FLOATS which
stores the frequency for each currently active MMU. By displaying these values
prominently on the screen the viewer will be able to observe whether consistent
frequencies are maintained.

To complete the simulation it is necessary to simulate the effect of processor and
communication failures. This is achieved by providing the antenna, MMU, and CCU
objects with an additional method which can be used to set them in a failure mode. A
failure in the simulation is simulated by a message not being returned. There are several
possible cases. One is where the receiver object successfully does the requested
operation and then fails without returning any indication that the operation has been
carried out. Another is when it fails prior to doing the operation or never acquiring the
message through a communications failure or the message not being sent or addressed
properly.

Any of the objects participating in the transaction may be set to simulate any of these
failure modes from a "simulation control object" which provides the user's input
interface. (See Figure 2)

Central Controller

Ichange_frequency[MMU, freq)l

Ant

MMU1 25

MMU2 4D
MMU3 5D

Ant_2

MMU1

MMU2
MMU3

25

40
50

Simulation Control

I failure l MMU1 MMU2 MMU3

Figure 2

3.0 Simulation

This report reflects only the fh'st pass of work on the simulation, which introduces the
plan for the design of the simulation. The details and implementation will follow in

Mission Project 4 11/15/91

subsequentpassesandreports. Thisplan is a high-level one, the purpose of which is to
start the process of developing the simulation. This report does not go into any great
detail describing the actual design, only an overview is given. The plan for the first pass
breaks down into three steps:

1) Design of simulation, with scenario, at a high level.

2) Elaboration of each of the kernel elements.

3) Design of mechanisms necessary for simulation control and
monitoring.

These steps are discussed in the following sections. To help. in the discussion, two
diagrams are introduced which are built upon the scenario gaven in the previous section.
These figures are based on the current preliminary design for the simulation. Figure 3
shows the relationship between the central controller objects and the antenna objects. It
is similar to the diagram used in the section describing the scenario. But notice that
instead of illustrating just the elements of the scenario, it includes some of the kernel
objects necessary to handle the scenario. Specifically these axe the lock objects and the
transaction objects. Notice that there is a lock object associated with each object that
must be locked. There is a transaction object for each transaction between other objects.

Ant_l

Central

Controller

Ant_2

Figure 3

Figure 2 shows the preliminary user interface for the simulation. The user interface is
typical of the screen display a user sees during a simulation session. This typical screen
includes the various objects introduced by the scenario (the central controller object, the
antenna objects, and the MMU objects) and the simulation (the simulation control
object). Some of the elements of the display are strictly to show the current state of those

Mission Project 5 11/15/91

elementswhile othersallow interactionwith theelementin question.Forexample,a
failure canbeinitiatedby simply selectingit on thescreen,i.e., selectingthefailure
methodwithin simulationcontrol box. A window wouldthenpopupat thatpoint for the
userto selectfurtheraspectsof thedesiredfailure (e.g.,whatmessageis to fail, between
whichtwo objects).

3.1 High level design of simulation

The first step is the design of the simulation, with the scenario, at a high level. This
design, in the follow-up work to this report, will then be hand-translated into simulation
code. Specifically in our case, it is translated into Smalltalk.

As described above in the description of the scenario, the scenario consists of three basic
classes of objects: the central controller, the Antennas, and the MMUs. In addition the
simulation itself introduces the simulation control object. Besides these four classes of
objects there will be object classes for kernel elements. Ignoring the simulation control
and kernel objects for the moment, the basic interaction within the scenario objects is as
follows. The central controller is responsiblefor initiating any frequency changes. One

of its operations is to change the frequency of a particular MMU to a specific frequency.
A message to this effect is sent to all Antenna objects and to the MMU object in question.
The mechanics of a nested transaction are used to insure the complete and consistent

updating of all objects involved. These include the passing back and forth of pre-commit
and commit messages between the central controller object and the Antenna and MMU

objects.

3.2 Elaboration of kernel elements

In the second step, each of the kernel elements are elaborated. Each kernel element is
described along with any special interactions that might be necessary for the simulation.
Those elements involved in the actual simulation/scenario will be addressed first, and

probably, more thoroughly. These elements were described in the MASC Kernel report.

As an example consider an interaction between the central controller object and an
antenna object. Suppose that the central controller sends a message to the antenna
changing the frequency for a specific MMU. Associated with the antenna object is a lock
object that controls the changing of the frequency values that the antenna tracks.
Associated with the transaction between the central controller object and the antenna

object is a transaction object to control the logistics of the transaction. This situation is
illustrated in figure 3. The full design will consider all of the necessary kernel objects
and their interactions within the scenario.

3.3 Design of simulation mechanisms

The final step is the design of the mechanisms necessary for the simulation control and
monitoring. This includes the introduction of errors and faults into the system. The
simulation will interject these errors and faults and then facilitate the management of
them. A user will be able to choose which error or fault is imposed upon the system and

then control and monitor the resulting activity.

Again consider the situation depicted in Figure 2. A separate object, the simulation
control object, oversees the introduction of errors and faults. In this case, an interactive
user can choose to have a failure by simply invoking the related method within the

simulation control object.

Mission Project 6 11/15/91

Other example mechanisms include those associated with debugging. One such
mechanism would present the user with a window which tracks the system's current
execution. The window might display a message indicating each method as it is invoked.
This display might include the invoked method's name, any parameters passed with the
message, and the originating object's identity.

4.0 Conclusions

In conclusion, the prototype for the kernel simulation will be done in Smalltalk.
Smalltalk was chosen because of its "design-prototype-refine" flexibility. The eventual
system will be a fully object-oriented one implemented in Ada via Dragoon. The
Smalltalk system is only for the prototype, the other team members working on the
MISSION project need not use it, although they can take it and use it if they so desire.

This report has given an overview of the plans for the prototype of the simulation with
regards to the scenario. The next step is to complete the design of the prototype (based
partially upon feedback to this report), implement it and report on its building and any
lessons learned. The process will be to build the scenario related portion first. Once this
is fully implemented and understood, it will serve as a basis for generating the full
simulation.

Mission Project 7 11/15/91

